HOMEWORK ASSIGNMENT 4

Name: Due: Wednesday September 26

PROBLEM 1: STRANG 4.1 # 3,(C)(D)(E), PAGE 202

Construct a matrix with the required property or say why that is impossible:

1.
$$A\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 has a solution and $A^T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

- 2. Every row is orthogonal to every column (A is not the zero matrix)
- 3. Columns add up to a column of zeros, rows add to a row of 1's.

PROBLEM 2: STRANG 4.1 #4, PAGE 202

If AB = 0 then the columns of B are in the _____ of A. The rows of A are in the ____ of B. With AB = 0, why can't A and B be 3 by 3 matrices of rank 2?

PROBLEM 3: STRANG 4.1 #14, PAGE 203

The floor V and the wall W are not orthogonal subspaces, because they share a nonzero vector (along the line where they meet). No planes V and W in \mathbb{R}^3 can be orthogonal! Find a vector in the column spaces of both matrices:

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \\ 1 & 2 \end{bmatrix}, \qquad B = \begin{bmatrix} 5 & 4 \\ 6 & 3 \\ 5 & 1 \end{bmatrix}$$

This will be a vector $A\mathbf{x}$ and also $B\hat{\mathbf{x}}$. Think 3 by 4 with the matrix $[A\ B]$.

PROBLEM 4: STRANG 4.1 #17, PAGE 204

If S is the subspace of \mathbb{R}^3 containing only the zero vector, what is S^{\perp} ? If S is spanned by (1,1,1), what is S^{\perp} ? If S is spanned by (1,1,1) and (1,1,-1), what is a basis for S^{\perp} ?

Problem 5: Section 4.2 #1, page 214

Find the projection, \mathbf{p} , of \mathbf{b} onto the line through \mathbf{a} . Check that \mathbf{e} ($\mathbf{e} = \mathbf{b} - \mathbf{p}$) is perpendicular to \mathbf{a} :

$$(a) \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \text{ and } \mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \qquad (b) \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix} \text{ and } \mathbf{a} = \begin{bmatrix} -1 \\ -3 \\ -1 \end{bmatrix}$$

Problem 6: Section 4.2 #3, page 215

In the previous problem (Problem 5), find the projection matrix $P = \mathbf{a}\mathbf{a}^T/\mathbf{a}^T\mathbf{a}$ onto the line through each vector \mathbf{a} . Verify in both cases that $P^2 = P$. Multiply $P\mathbf{b}$ in each case to compute the projection \mathbf{p} .

PROBLEM 7: STRANG 4.2 #16, PAGE 216

What linear combination of (1, 2, -1) and (1, 0, 1) is closest to $\mathbf{b} = (2, 1, 1)$?

PROBLEM 8: STRANG 4.2 #19, PAGE 216

To find the projection matrix onto the plane x - y - 2z = 0, choose two vectors in that plane and make them the columns of A. The plane will be the column space of A! Then compute $P = A(A^TA)^{-1}A^T$.

Problem 9: Strang 4.3 # 1, page 229

With b = 0, 8, 8, 20 at t = 0, 1, 3, 4, set up and solve the normal equations $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$. For the best straight line in Figure 4.9a, find its four heights p_i and four errors e_i . What is the minimum value $E = e_1^2 + e_2^2 + e_3^2 + e_4^2$?

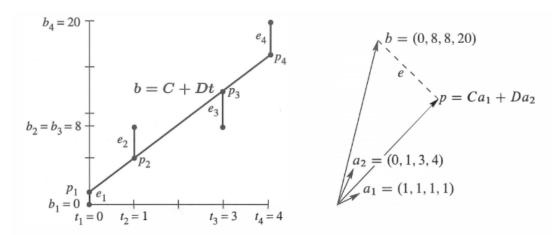


Figure 4.9: **Problems 1–11**: The closest line C + Dt matches $Ca_1 + Da_2$ in \mathbb{R}^4 .

Problem 10: Strang 4.3 # 21, page 231

Which of the four subspaces contains the error vector \mathbf{e} ? Which contains $\hat{\mathbf{x}}$? What is the nulspace of A?

PROBLEM 10:

Study the material for the first midterm exam (Chapters 1, 2, 3 and Sec. 4.1, 4.2 of Chapter 4). Which concept would you most like to review?