HOMEWORK ASSIGNMENT 5

Name: Due: Friday October 12

Problem 1

Given the input data x = 0, 1, 1, 2, y = 0, 1, 1, 3 and the output data z = 0, 1, 2, 2, 3

- 1. Find the plane that best fits the data.
- 2. Find the paraboloid $z = ax^2 + by^2 + c$ that best fits the data.

PROBLEM 2: STRANG
$$4.3 \# 12$$
, PAGE 230

This problem projects $\mathbf{b} = (b_1, \dots, b_m)$ onto the line through $\mathbf{a} = (1, \dots, 1)$. We solve m equations $\mathbf{a}x = \mathbf{b}$ in 1 unknown (by least squares).

- 1. Solve $\mathbf{a}^T \mathbf{a} \hat{x} = \mathbf{a}^T \mathbf{b}$ to show that \hat{x} is the mean (the average) of the **b**'s.
- 2. Find $\mathbf{e} = \mathbf{b} \mathbf{a}\hat{x}$ and the variance $\|\mathbf{e}\|^2$ and the standard deviation $\|\mathbf{e}\|$.
- 3. The horizontal line $\hat{\mathbf{b}} = 3$ is closest to $\mathbf{b} = (1, 2, 6)$. Check that $\mathbf{p} = (3, 3, 3)$ is perpendicular to \mathbf{e} and find the 3 by 3 projection matrix P.

PROBLEM 3: STRANG 4.4 #11, PAGE 243

- 1. Gram-Schmidt: Find orthonormal vectors \mathbf{q}_1 and \mathbf{q}_2 in the plane spanned by $\mathbf{a} = (1, 3, 4, 5, 7)$ and $\mathbf{b} = (-6, 6, 8, 0, 8)$.
- 2. Which vector in this plane is closest to (1,0,0,0,0)?

Problem 4

1. Find an orthonormal basis (using Gram-Schmidt method) for the subspace S in \mathbb{R}^4 spanned by all solutions of

$$x_1 + x_2 + x_3 - x_4 = 0.$$

- 2. Find an orthonormal basis for the orthogonal complement S^{\perp} .
- 3. Find \mathbf{b}_1 in S and \mathbf{b}_2 in S^{\perp} so that $\mathbf{b}_1 + \mathbf{b}_2 = (1, 1, 1, 1)$.

Problem 5: Section 8.1 #4, page 408

If S and T are linear transformations, is $T(S(\mathbf{v}))$ linear or quadratic?

- 1. (Special case) If $S(\mathbf{v}) = \mathbf{v}$ and $T(\mathbf{v}) = \mathbf{v}$, then $T(S(\mathbf{v})) = \mathbf{v}$ or \mathbf{v}^2 ?
- 2. (General case) $S(\mathbf{v}_1 + \mathbf{v}_2) = S(\mathbf{v}_1) + S(\mathbf{v}_2)$ and $T(\mathbf{v}_1 + \mathbf{v}_2) = T(\mathbf{v}_1) + T(\mathbf{v}_2)$ combine into

$$T(S(\mathbf{v}_1 + \mathbf{v}_2)) = T(\underline{\hspace{1cm}}) = \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

PROBLEM 6: SECTION 8.1 #6, PAGE 408

Which of these transformations satisfy $T(\mathbf{v} + \mathbf{w}) = T(\mathbf{v}) + T(\mathbf{w})$ and which satisfy $T(c\mathbf{v}) = cT(\mathbf{v})$? Which are linear transformations?

- 1. $T(\mathbf{v}) = \mathbf{v}/\|\mathbf{v}\|$
- 2. $T(\mathbf{v}) = v_1 + v_2 + v_3$
- 3. $T(\mathbf{v}) = (v_1, 2v_2, 3v_3)$
- 4. $T(\mathbf{v}) = \text{largest component of } \mathbf{v}.$

PROBLEM 7: STRANG 8.1 #29, PAGE 408

What conditions on $\det A = ad - bc$ ensure that the output house AH (see book) will

- 1. be squashed onto a line?
- 2. keep its endpoints in clockwise order (not reflected)?
- 3. have the same area as the original house?

Problem 8: Strang 8.2 # 1,2, page 418

- 1. The transformation S takes the second derivative. Keep $1, x, x^2, x^3$ as the input basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ and also as output basis $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4$. Write $S(\mathbf{v}_1), S(\mathbf{v}_2), S(\mathbf{v}_3), S(\mathbf{v}_4)$ in terms of the \mathbf{w} 's. Find the 4 by 4 matrix A_2 for S.
- 2. What functions have $S(\mathbf{v}) = \mathbf{0}$? They are in the kernel of the second derivative S. What vectors are in the nullspace of its matrix A_2 ?

Problem 9: Strang 8.2 # 15, page 419

- 1. What matrix M transforms (1,0) and (0,1) to (r,t) and (s,u)?
- 2. What matrix N transforms (a, c) and (b, d) to (1, 0) and (0, 1)?
- 3. What condition on a, b, c, d will make part (b) impossible?

PROBLEM 10:

Read Chapter 5 (determinants). Which concept was most difficult to you?