True or False

- 1. Each one of the matrices A^TA and AA^T is symmetric.
- 2. Let A, B, C be invertible matrices. Then, the product ABC is always invertible.
- 3. If A and B have inverses A^{-1} and B^{-1} , then $(A+B)^{-1} = A^{-1} + B^{-1}$.
- 4. If AB is invertible, then A and B are invertible.
- 5. If an n by n matrix B is invertible, then the product AB is invertible for any m by n matrix A.
- 6. Let M an n by n matrix such that $M\vec{x} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ x_n x_1 \end{bmatrix}$ for all $\vec{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$. Then, rank(M) = n 1.
- 7. If A and B are matrices with rank 1, then so is (A+B)/2.
- 8. If a 3x4 matrix has a RREF with only three pivots, then its rows are linearly dependent.
- 9. If a 3x4 matrix has a RREF with three pivots, then its columns must span \mathbb{R}^3 .
- 10. If a 4x3 matrix has 3 pivots, then $A\vec{x} = \vec{b}$ always has at least a solutions
- 11. If a 5x3 matrix has 3 pivots, then $A\vec{x} = \vec{b}$ always has a solution.
- 12. If a 3x5 matrix has 3 pivots, then $A\vec{x} = \vec{b}$ always has infinite solutions.
- 13. If a 3x5 matrix has RREF with three pivots, then its rows form a basis of \mathbb{R}^5 .
- 14. If a 5x3 matrix A has RREF with three pivots, then the columns of A are linearly independent.
- 15. If P_{12} is the matrix that changes row 1 with row 2, then $P_{12}^2 = I$ (I is the identity matrix).
- 16. Let E be the elimination matrix that adds 2 times row 1 to row 2. Then E^{-1} adds 1/2 times row 1 to row 2.
- 17. Consider a matrix that adds row1 to row 2 and at the same time adds row 2 to row 1. Then, the inverse matrix subtracts row 1 from row 2 and at the same time subtracts row 2 from row 1.
- 18. Let A = LU (L lower triangular with ones on the diagonal, U upper triangular). Let \vec{a}_1 , \vec{a}_2 , \vec{a}_3 be the columns of A and \vec{u}_1 , \vec{a}_2 , \vec{a}_3 be the columns of U. Then, if $\vec{u}_3 = 2\vec{u}_2 \vec{u}_1$, we also have that $\vec{a}_3 = 2\vec{a}_2 \vec{a}_1$.

- 19. If a vector \vec{k} lies in the nullspace of A^T and if $A\vec{x} = \vec{b}$, then $A(\vec{x} + \vec{k})$ also equals \vec{b} .
- 20. An square matrix A such that $N(A) = \{0\}$ always has an inverse.
- 21. The matrices A and -A have the same four subspaces.
- 22. The matrices A and A^T have the same number of pivots.
- 23. Let A be a square matrix such that $A\vec{x} = \vec{0}$ for some $\vec{x} \neq \vec{0}$. Then A can never have an inverse.
- 24. The set consisting of the x-axis, the y-axis, the line y=x and the line y=-x forms a subspace of \mathbb{R}^2 .
- 25. The set of points satisfying both y = 3x + z and z + x = 0 is a subspace of \mathbb{R}^3 .
- 26. The set of points satisfying $x^2 + y = 0$ is a subspace of \mathbb{R}^2 .
- 27. The set of points satisfying $x^2 + y^2 = 0$ is a subspace of \mathbb{R}^2 .
- 28. The set of points satisfying both y = 3x + z and z + x = 2 is a subspace of \mathbb{R}^3 .
- 29. Let V be the set of 2 by 2 matrices. Then, the set of symmetric 2 by 2 matrices is a subspace of V.
- 30. Consider the set of vectors \vec{x} such that $A\vec{y} = \vec{x}$ always has a solution. Is that a subspace?
- 31. The set of points satisfying $y = 3x^2$ is a subspace of \mathbb{R}^2 .
- 32. Let V be the vector space of polynomials with degree no more than 3. The set of polynomials of the form $p(x) = ax^2$ with $a \in \mathbb{R}$ is a subspace of V.
- 33. Given a basis, one can always find an orthonormal one with the same span.
- 34. For any basis $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$ of the vector space U, it holds that $\vec{u} = (\vec{u}_1 \cdot \vec{u})\vec{u}_1 + (\vec{u}_2 \cdot \vec{u})\vec{u}_2 + (\vec{u}_3 \cdot \vec{u})\vec{u}_3$, for all $\vec{u} \in U$.
- 35. In \mathbb{R}^3 , the x-axis and z-axis are orthogonal complements.
- 36. The set of polynomials of degree exactly 3 is a vector space.
- 37. In \mathbb{R}^2 , the orthogonal complement of a line is another line.
- 38. In \mathbb{R}^3 , the orthogonal complement of a line is another line.
- 39. The line spanned by (1,1,1) is the orthogonal complement of x+y+z=0 in \mathbb{R}^3 .
- 40. In \mathbb{R}^3 , the orthogonal complement of a line is a plane.
- 41. In \mathbb{R}^3 , the orthogonal complement of a plane is another plane.

- 42. In \mathbb{R}^3 , the orthogonal complement of a line is a vector space with dimension equal to 2.
- 43. If A is a 3 by 4 matrix with rank(A)=2, then the nullspace of A is a line.
- 44. If A is a 5 by 4 matrix with rank(A)=3, then the orthogonal complement of the row space of A has dimension 2.
- 45. If A is invertible, then $A(A^TA)^{-1}A^T = I$ always hold (I is the identity matrix).
- 46. In \mathbb{R}^3 , the projection matrix onto a plane has rank 1.
- 47. The matrix that projects onto the column space of A is $A(A^TA)^{-1}A^T$.
- 48. In \mathbb{R}^3 , the projection matrix onto a line has rank 1.
- 49. In \mathbb{R}^3 , the nullspace of the projection matrix onto a line is another line perpendicular to it.
- 50. In \mathbb{R}^3 , the rank of the projection matrix onto a line is 2.
- 51. If det(A) = -1 for some matrix A, then there is some \vec{b} for which $A\vec{x} = \vec{b}$ has infinitely many solutions.
- 52. For any square matrices A, det(2A) = 2 det(A).
- 53. For any square matrices A and B, $\det(A+B) = \det(A) + \det(B)$.
- 54. If A is a 2 by 2 matrix with eigenvalues -1 and 2, and B is a 2 by 2 matrix with eigenvalues 0 and 2, then $\det((B-I)^2A^{-1})=1$.
- 55. If A is a 3x3 matrix with determinant 1, then 2A has determinant 6.
- 56. If A is a 2 by 2 matrix with eigenvalues -1 and 2, and B is a 2 by 2 matrix with eigenvalues 0 and 1, then $\det((B+I)A^{-1})=1$.
- 57. If a square matrix A has 4 as an eigenvalue, then A-3I must have 1 as an eigenvalue.
- 58. Let A be an n by n matrix. If n is odd and A is skew-symmetric (i.e., $A^T = -A$), then A is not invertible.
- 59. The eigenvalues of 2A are 2 times the eigenvalues of A.
- 60. The eigenvalues of A and A^T are the same.
- 61. The eigenvalues and eigenvectors of A and A^T are the same.
- 62. If $det(A^2) = 1$, then A's eigenvalues must all be 1 or -1.
- 63. If $A^3 = 0$ for some square matrix A, then all the eigenvalues of A are zero.

- 64. If \vec{u}_1 and \vec{u}_2 are eigenvectors of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 7 \end{bmatrix}$ corresponding to distinct eigenvalues, then $\vec{u}_1^T \vec{u}_2 = 0$.
- 65. If A is symmetric, then so is e^A .
- 66. If A is singular, then so is e^A .
- 67. A 3 by 3 symmetric matrix with eigenvalues 0, 0, 1 always has rank(A)=1.
- 68. If A is a square matrix and B is obtained from A via row operation R2'=R2+3R1, then B has the same eigenvalues as A.
- 69. For any matrix A, the eigenvectors corresponding to distinct eigenvalues are perpendicular.
- 70. If A is invertible and has one eigenvalue λ , then $1/\lambda$ is an eigenvalue of A^{-1} .
- 71. A basis for eigenvectors for nonzero eigenvalues of A is a basis for C(A) for any matrix A.
- 72. The eigenvectors for the zero eigenvalue are the null space of A.
- 73. The only upper triangular 3×3 matrix with 1s on the diagonal which is diagonalizable is the identity matrix.
- 74. The matrix $\begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 2 & 4 & 2 \end{bmatrix}$ has an eigenvalue equal to 9.
- 75. Let P be the matrix which projects vector of \mathbb{R}^3 onto the plane x+y+z=0. The eigenvalues of P are 0,1,1.
- 76. Let P be a matrix which projects vector of \mathbb{R}^3 onto a line. The eigenvalues of P are 1,0,0.
- 77. If A is a rotation matrix, then it cannot have real eigenvalues.
- 78. A projection matrix can only have eigenvalues equal to 1 or 0.
- 79. A 2 by 2 matrix that rotates every vector 90° cannot have any real eigenvalues.
- 80. If a 3 by 3 matrix has all three eigenvalues different than zero, then the eigenvectors form a basis of \mathbb{R}^3 .
- 81. A 3 by 3 matrix with eigenvalues 0, 1, -1 is always diagonalizable.
- 82. A singular matrix is never diagonalizable.

- 83. If A and B are diagonalizable, then so is A + B.
- 84. The transformation $T: \mathbb{R}^2 \to \mathbb{R}$ given by $T(\vec{x}) = x_1^2 + x_2$ is linear (here $\vec{x} = (x_1, x_2)$).
- 85. The transformation $T: \mathbb{R}^2 \to \mathbb{R}$ given by $T(\vec{x}) = 1 x_1^2 x_2$ is linear (here $\vec{x} = (x_1, x_2)$).
- 86. The transformation $T: \mathbb{R}^2 \to \mathbb{R}$ given by $T(\vec{x}) = x_1 x_2$ is linear (here $\vec{x} = (x_1, x_2)$).
- 87. If A is a change of basis matrix from a basis v_i to a basis u_i , and B is a change of basis matrix from the basis u_i to a basis w_i , then AB is a change of basis matrix from v_i to w_i .
- 88. Consider a plane in \mathbb{R}^3 and a basis U for it. The projection of vectors in \mathbb{R}^3 onto that plane is a linear transformation. The corresponding matrix is 2 by 2 when we use U as output basis.
- 89. Is the following transformation linear? $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as $T(\vec{x}_0) = \text{solution to}$ the system given by $\vec{x}' = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix} \vec{x}$ with initial condition \vec{x}_0 .
- 90. Is the following transformation linear? $T: \mathbb{R}^3 \to \mathbb{R}^3$ $\vec{x} \to T(\vec{x}) = \min_{i=1,2,3} x_i$
- 91. Any matrix with orthonormal columns always has orthonormal rows.
- 92. An orthogonal matrix always preserves lengths and angles.
- 93. If Q is an orthogonal matrix, then the corresponding linear transformation preserves lengths and angles, i.e., length of $Q\vec{x}$ is equal to length of \vec{x} and the angle between \vec{x} and \vec{y} is equal to the angle between $Q\vec{x}$ and $Q\vec{y}$.
- 94. An orthogonal matrix always has eigenvalues with modulo 1.
- 95. A symmetric and orthogonal matrix always has eigenvalues equal to 1 or -1.
- 96. If A is an orthogonal matrix, then $\lambda = 2$ cannot be an eigenvalue.
- 97. For any M symmetric matrix, it is impossible to find two eigenvectors $\vec{u}_1 \neq \vec{u}_2$ such that $\vec{u}_1^T \vec{u}_2 \neq 0$.
- 98. It is possible to find a real matrix A such that the matrix AA^T have $\lambda = -1$ as an eigenvalue.
- 99. It is possible to find a real matrix A such that the matrix AA^T have $\lambda=0$ as an eigenvalue.
- 100. A definite positive matrix always has an inverse.

- 101. The matrix $A^T A$ is always positive semidefinite.
- 102. Let A be a 2 by 5 matrix such that AA^T has eigenvalues 1 and 2. Then $\dim(N(A^TA)) = 2$.
- 103. For any matrix A, the nullspace of A is exactly the same as the nullspace of $A^{T}A$.
- 104. For any orthogonal matrix Q, all its singular values are 1.
- 105. Let $\vec{x} \neq \vec{0}$ be a vector in \mathbb{R}^3 . Then the matrix $A = \vec{x}\vec{x}^T$ has eigenvalues $\lambda_1 = 0 = \lambda_2$, $\lambda_3 > 0$.
- 106. If m < n, then $A^T A$ cannot be positive definite.
- 107. If A and B are positive definite, then so is (A + B)/2.
- 108. If a square matrix A is stochastic (nonnegative entries with columns adding to 1), then so is e^A .
- 109. If square matrices A and B are stochastic (nonnegative entries with columns adding to 1), then so is (A + B)/2.
- 110. A real matrix A has eigenvalues $\lambda_1 = -3$, $\lambda_2 = 1$, $\lambda_3 = 3$. Then A has at least a non positive entry.
- 111. A real matrix A has eigenvalues $\lambda_1 = 4$, $\lambda_2 = -3$, $\lambda_3 = 1 + i$, $\lambda_4 = 1 i$. Then all entries of A have to be positive.
- 112. A real square matrix with positive entries cannot have negative eigenvalues.
- 113. A real square matrix with positive entries always has $\lambda = 1$ as an eigenvalue, and the modulo of all the other eigenvalues is less than 1.
- 114. A real square matrix whose columns add up to 1 always has $\lambda = 1$ as an eigenvalue.
- 115. A real square matrix whose columns add up to 1 always has $\lambda = 1$ as an eigenvalue and the modulo of all the other eigenvalues is less than 1.
- 116. Let A be a 3 by 3 Markov matrix. Then $\vec{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ is an eigenvector of A^T .
- 117. A real matrix A has eigenvalues $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = -2$, $\lambda_4 = 0$. Then A cannot have all of its entries positive.
- 118. A real matrix A has eigenvalues $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = 2$, $\lambda_4 = 0$. Then A cannot have all of its entries positive.
- 119. A real matrix A has eigenvalues $\lambda_1 = 1/2$, $\lambda_2 = 1$, $\lambda_3 = 1$, $\lambda_4 = -1/2$. Then A cannot have all of its entries positive.

- 120. Let A be a square real matrix with positive entries. It is possible for A to have the following eigenvalues: $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = 2$, $\lambda_4 = 0$.
- 121. A real matrix A has eigenvalues $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = 1/2$, $\lambda_4 = 0$. We also know that (1, 1, 1, 1) is an eigenvector of A^T corresponding to $\lambda = 1$. Then we know that A correspond to a Markov chain and that this has a unique steady state.
- 122. We know that the maximum positive eigenvalue of a real matrix A is $\lambda=3$ with eigenvector $\vec{u}=\begin{bmatrix} -1/2\\0\\1 \end{bmatrix}$. Then we can ensure that A have at least one non positive entry.
- 123. We know that a real matrix A has eigenvalues $\lambda_1 = 3$, $\lambda_2 = 1$, $\lambda_2 = -2$ with first eigenvector $\vec{u}_1 = \begin{bmatrix} -1/2 \\ 0 \\ 1 \end{bmatrix}$. Then we can ensure that A has at least one non positive entry.
- 124. If A is a real square matrix whose columns add up to one, then the entries of $A\vec{u}$ sum up to the same quantity as the entries of \vec{u} .
- 125. If a square matrix A has all its entries strictly negative, then it must have a strictly negative eigenvalue, and one can choose a strictly negative eigenvector corresponding to that eigenvalue.
- 126. The incidence matrix of a directed graph is always symmetric.
- 127. The incidence matrix of a directed graph is always square.
- 128. The $n \times 1$ vector $\begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}$ is an eigenvector of any $m \times n$ incidence matrix.
- 129. The dimension of the null space of an incidence matrix is never smaller than the dimension of the left null space of an incidence matrix.
- 130. The adjacency matrix of an undirected graph is always symmetric.
- 131. The adjacency matrix of an undirected graph is always square.
- 132. If a graph G is connected, then every diagonal entry of A^2 is nonzero for the adjacency matrix A.
- 133. If the standard form of an LP has \vec{b} with all nonnegative entries, then the origin $(x_1 = ... = x_n = 0)$ is in the fundamental domain.

- 134. If the standard form of an LP has $\vec{b} \geq 0$ and $\vec{c} \leq \vec{0}$, then the maximum is attained at the origin.
- 135. If A is a 5×3 matrix, and $A = U\Sigma V^T$ is a singular value decomposition, and Σ has two nonzero entries, then the null space of AA^T has dimension 3.
- 136. If A is a 5 × 3 matrix, then any basis of N(A) can be used for the last columns of V in an SVD $A=U\Sigma V^T$