HOMEWORK ASSIGNMENT 5

Name: Due: Friday March 22, 4PM

All the problems in this homework are from W. Strauss book.

For the problems corresponding to Chapter 4 (Problems 1 to 8) you don't need to compute the coefficients of the series expansions.

A quantum-mechanical particle on the line with an infinite potential outside the interval (0, L) ("particle in a box") is given by Schrödinger's equation $u_t = iu_{xx}$ on (0, L) with Dirichlet conditions at the ends (here i is the complex unit). Separate the variables to find the representation of its solution as a series.

Solve the diffusion problem $u_t = ku_{xx}$ in 0 < x < L, with the mixed boundary conditions $u(0,t) = u_x(L,t) = 0$.

PROBLEM 3: STRAUSS, SECTION 4.2 #2, P.92

Consider the equation $u_{tt} = c^2 u_{xx}$ for 0 < x < L, with boundary conditions $u_x(0,t) = u(L,t) = 0$ (Neumann at the left, Dirichlet at the right).

- (a) Show that the eigenfunctions are $\cos((n+\frac{1}{2})\pi x/L)$.
- (b) Write the series expansion for a solution u(x,t).

PROBLEM 4: STRAUSS, SECTION 4.2 #3, P.92

Solve the Schrödinger equation $u_t = iku_{xx}$ for real k in the interval 0 < x < L with the boundary conditions $u_x(0,t) = 0 = u(L,t)$.

Problem 5: Strauss, Section 4.2 #4, p.92

Consider the diffusion equation inside an enclosed circular tube. Let its length (circumference) be 2L. Let x denote the arc length parameter where -L < x < L. Then the concentration of the diffusing substance satisfies

$$u_t = ku_{xx}, -L < x < L,$$

 $u(-L,t) = u(L,t), u_x(-L,t) = u_x(L,t).$

These are called periodic boundary conditions.

(a) Show that the eigenvalues are $\lambda = (n\pi/L)^2$ for n = 0, 1, 2, 3, ... (b) Show that the concentration is

$$u(x,t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left(A_n \cos(\frac{n\pi x}{L}) + B_n \sin(\frac{n\pi x}{L}) \right) e^{-n^2 \pi^2 kt/L^2}.$$

PROBLEM 6: STRAUSS, SECTION 4.3 #1, P.100

Find the eigenvalues graphically for the boundary conditions

$$X(0) = 0,$$
 $X'(L) + aX(L) = 0.$

Assume that $a \neq 0$.

PROBLEM 7: STRAUSS, SECTION 4.3 #2, P.100

Consider the eigenvalue problem with Robin BCs at both ends:

$$-X'' = \lambda X$$

 $X'(0) - a_0 X(0) = 0, \quad X'(L) + a_L X(L) = 0.$

- (a) Show that $\lambda = 0$ is an eigenvalue if and only if $a_0 + a_L = -a_0 a_L L$.
- (b) Find the eigenfunctions corresponding to the zero eigenvalue (Hint: First solve the ODE for X(x)). The solutions are not sines or cosines.)

PROBLEM 8: STRAUSS, SECTION 4.3 #9, P.100

On the interval $0 \le x \le 1$ of length one, consider the eigenvalue problem

$$-X'' = \lambda X$$

 $X'(0) + X(0) = 0$ $X(1) = 0$

(absorption at one end and zero at the other).

- (a) Find an eigenfunction with eigenvalue zero. Call it $X_0(x)$.
- (b) Find an equation for the positive eigenvalues $\lambda = \beta^2$.
- (c) Show graphically from part (b) that there are an infinite number of positive eigenvalues.
- (d) Is there a negative eigenvalue?

PROBLEM 9: STRAUSS, SECTION 5.1 #4, P.111

Find the Fourier cosine series of the function $|\sin x|$ in the interval $(-\pi, \pi)$. Use it to find the sums

$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{4n^2 - 1}.$$

PROBLEM 10: STRAUSS, SECTION 5.1 #5, P.112

Given the Fourier sine series of $\phi(x) = x$ on (0, L). Assume that the series can be integrated term by term, a fact that will be shown later.

- (a) Find the Fourier cosine series of the function $x^2/2$. Find the constant of integration that will be the first term in the cosine series.
- (b) Then by setting x = 0 in your results, find the sum of the series

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}.$$

PROBLEM 11: STRAUSS, SECTION 5.1 #9, P.112

Solve $u_{tt} = c^2 u_{xx}$ for $0 < x < \pi$, with the boundary conditions $u_x(0,t) = u_x(\pi,t) = 0$ and the initial conditions u(x,0) = 0, $u_t(x,0) = \cos^2 x$.

PROBLEM 12:

Read Chapter 5 of W. Strauss book. Which part was most confusing to you?