829

In Exercises 66-68, use Equations (2) and (3) to find the least squares In Exercises 5. In Exercise 5. In Exercis line for contract the value of y that would correspond to x = 4.

66.
$$(-2,0)$$
, $(0,2)$, $(2,3)$
67. $(-1,2)$, $(0,1)$, $(3,-4)$

COMPUTER EXPLORATIONS

In Exercises 69–74, you will explore functions to identify their local extrema. Use a CAS to perform the following steps:

- a. Plot the function over the given rectangle.
- b. Plot some level curves in the rectangle.
- c, Calculate the function's first partial derivatives and use the CAS equation solver to find the critical points. How do the critical points relate to the level curves plotted in part (b)? Which critical points, if any, appear to give a saddle point? Give reasons for your answer.

- d. Calculate the function's second partial derivatives and find the discriminant $f_{xx}f_{yy} - f_{xy}^2$.
- e. Using the max-min tests, classify the critical points found in part (c). Are your findings consistent with your discussion in part (c)?

69.
$$f(x, y) = x^2 + y^3 - 3xy$$
, $-5 \le x \le 5$, $-5 \le y \le 5$

70.
$$f(x, y) = x^3 - 3xy^2 + y^2$$
, $-2 \le x \le 5$, $-5 \le y \le 5$
71. $f(x, y) = x^4 + x^2$ $-2 \le x \le 2$, $-2 \le y \le 2$

71.
$$f(x, y) = x^4 + y^2 - 8x^2 - 6y + 16$$
, $-3 \le x \le 3$, $-6 \le y \le 6$

72.
$$f(x,y) = 2x^4 + y^4 - 2x^2 - 2y^2 + 3$$
, $-3/2 \le x \le 3/2$, $-3/2 \le x \le 3/2$

73.
$$f(x, y) = 5x^6 + 18x^5 - 30x^4 + 30xy^2 - 120x^3$$
,
 $-4 \le x \le 3$, $-2 \le y \le 2$

74.
$$f(x, y) = 5x^{3} + 18x^{3} - 30x^{4} + 30xy^{2} - 120x^{2} - 4 \le x \le 3, \quad -2 \le y \le 2$$

74. $f(x, y) =\begin{cases} x^{5} \ln(x^{2} + y^{2}), & (x, y) \ne (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$

$$-2 \le x \le 2, \quad -2 \le y \le 2$$

Lagrange Multipliers

HISTORICAL BIOGRAPHY

Joseph Louis Lagrange (1736-1813)

Sometimes we need to find the extreme values of a function whose domain is constrained to lie within some particular subset of the plane—a disk, for example, a closed triangular region, or along a curve. In this section, we explore a powerful method for finding extreme values of constrained functions: the method of Lagrange multipliers.

Constrained Maxima and Minima

We first consider a problem where a constrained minimum can be found by eliminating a variable.

Find the point P(x, y, z) on the plane 2x + y - z - 5 = 0 that is closest **EXAMPLE 1** to the origin.

The problem asks us to find the minimum value of the function Solution

$$|\overrightarrow{OP}| = \sqrt{(x-0)^2 + (y-0)^2 + (z-0)^2}$$

= $\sqrt{x^2 + y^2 + z^2}$

subject to the constraint that

$$2x + y - z - 5 = 0.$$

Since $|\overrightarrow{OP}|$ has a minimum value wherever the function

$$f(x, y, z) = x^2 + y^2 + z^2$$

has a minimum value, we may solve the problem by finding the minimum value of f(x, y, z)subject to the constraint 2x + y - z - 5 = 0 (thus avoiding square roots). If we regard x and y as the independent variables in this equation and write z as

$$z=2x+y-5,$$

our problem reduces to one of finding the points (x, y) at which the function

$$h(x,y) = f(x,y,2x+y-5) = x^2 + y^2 + (2x+y-5)^2$$

has its minimum value or values. Since the domain of h is the entire xy-plane, the First Derivative Test of Section 14.7 tells us that any minima that h might have must occur at points where

$$h_x = 2x + 2(2x + y - 5)(2) = 0,$$
 $h_y = 2y + 2(2x + y - 5) = 0.$

This leads to

$$10x + 4y = 20,$$
 $4x + 4y = 10,$

and the solution

$$x=\frac{5}{3}, \qquad y=\frac{5}{6}.$$

We may apply a geometric argument together with the Second Derivative Test to show that these values minimize h. The z-coordinate of the corresponding point on the plane z = 2x + y - 5 is

$$z = 2\left(\frac{5}{3}\right) + \frac{5}{6} - 5 = -\frac{5}{6}.$$

Therefore, the point we seek is

Closest point:
$$P\left(\frac{5}{3}, \frac{5}{6}, -\frac{5}{6}\right)$$
.

The distance from P to the origin is $5/\sqrt{6} \approx 2.04$.

Attempts to solve a constrained maximum or minimum problem by substitution, as we might call the method of Example 1, do not always go smoothly. This is one of the reasons for learning the new method of this section.

EXAMPLE 2 Find the points on the hyperbolic cylinder $x^2 - z^2 - 1 = 0$ that are closest to the origin.

Solution 1 The cylinder is shown in Figure 14.49. We seek the points on the cylinder closest to the origin. These are the points whose coordinates minimize the value of the function

$$f(x, y, z) = x^2 + y^2 + z^2$$
 Square of the distance

subject to the constraint that $x^2 - z^2 - 1 = 0$. If we regard x and y as independent variables in the constraint equation, then

$$z^2 = x^2 - 1$$

and the values of $f(x, y, z) = x^2 + y^2 + z^2$ on the cylinder are given by the function

$$h(x, y) = x^2 + y^2 + (x^2 - 1) = 2x^2 + y^2 - 1.$$

To find the points on the cylinder whose coordinates minimize f, we look for the points in the xy-plane whose coordinates minimize h. The only extreme value of h occurs where

$$h_x = 4x = 0 \qquad \text{and} \qquad h_y = 2y = 0,$$

that is, at the point (0, 0). But there are no points on the cylinder where both x and y are zero. What went wrong?

What happened was that the First Derivative Test found (as it should have) the point in the domain of h where h has a minimum value. We, on the other hand, want the points on the cylinder where h has a minimum value. Although the domain of h is the entire

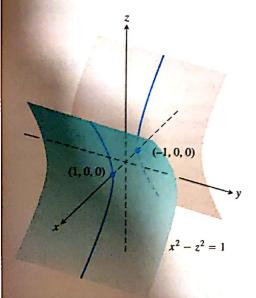


FIGURE 14.49 The hyperbolic cylinder $x^2 - z^2 - 1 = 0$ in Example 2.

On this part,

FIGURE 14.50 The region in the xy-plane from which the first two coordinates of the $p_{\text{oints}}(x, y, z)$ on the hyperbolic cylinder $\frac{p_{12}}{r^2 - z^2} = 1$ are selected excludes the band $\frac{1}{-1} < x < 1$ in the xy-plane (Example 2).

xy-plane, the domain from which we can select the first two coordinates of the points The hyperbolic cylinder $x^2 - z^2 = 1$ (x, y, z) on the cylinder is restricted to the "shadow" of the cylinder on the xy-plane; it does not include the band between the lines x = -1 and x = 1 (Figure 14.50). We can avoid this problem if we treat y and z as independent variables (instead of x

and y) and express x in terms of y and z as

$$x^2 = z^2 + 1$$
.

With this substitution, $f(x, y, z) = x^2 + y^2 + z^2$ becomes

$$k(y, z) = (z^2 + 1) + y^2 + z^2 = 1 + y^2 + 2z^2$$

and we look for the points where k takes on its smallest value. The domain of k in the yzplane now matches the domain from which we select the y- and z-coordinates of the points (x, y, z) on the cylinder. Hence, the points that minimize k in the plane will have corresponding points on the cylinder. The smallest values of k occur where

$$k_y = 2y = 0 \qquad \text{and} \qquad k_z = 4z = 0,$$

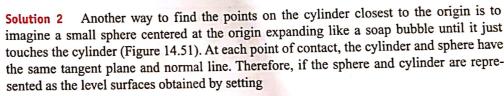
or where y = z = 0. This leads to

$$x^2 = z^2 + 1 = 1, \qquad x = \pm 1.$$

The corresponding points on the cylinder are $(\pm 1, 0, 0)$. We can see from the inequality

$$k(y,z) = 1 + y^2 + 2z^2 \ge 1$$

that the points $(\pm 1, 0, 0)$ give a minimum value for k. We can also see that the minimum distance from the origin to a point on the cylinder is 1 unit.



$$f(x, y, z) = x^2 + y^2 + z^2 - a^2$$
 and $g(x, y, z) = x^2 - z^2 - 1$

equal to 0, then the gradients ∇f and ∇g will be parallel where the surfaces touch. At any point of contact, we should therefore be able to find a scalar λ ("lambda") such that

$$\nabla f = \lambda \nabla g$$

or

$$2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k} = \lambda(2x\mathbf{i} - 2z\mathbf{k}).$$

Thus, the coordinates x, y, and z of any point of tangency will have to satisfy the three scalar equations

$$2x = 2\lambda x$$
, $2y = 0$, $2z = -2\lambda z$.

For what values of λ will a point (x, y, z) whose coordinates satisfy these scalar equations also lie on the surface $x^2 - z^2 - 1 = 0$? To answer this question, we use our knowledge that no point on the surface has a zero x-coordinate to conclude that $x \neq 0$. Hence, $2x = 2\lambda x$ only if

$$2 = 2\lambda$$
, or $\lambda = 1$.

For $\lambda = 1$, the equation $2z = -2\lambda z$ becomes 2z = -2z. If this equation is to be satisfied as well, z must be zero. Since y = 0 also (from the equation 2y = 0), we conclude that the points we seek all have coordinates of the form

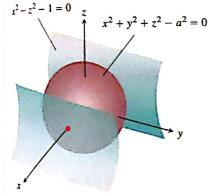


FIGURE 14.51 A sphere expanding like a soap bubble centered at the origin until it just touches the hyperbolic cylinder $x^2 - z^2 - 1 = 0$ (Example 2).

What points on the surface $x^2 - z^2 = 1$ have coordinates of this form? The answer is the points (x, 0, 0) for which

$$x^2 - (0)^2 = 1$$
, $x^2 = 1$, or $x = \pm 1$.

The points on the cylinder closest to the origin are the points $(\pm 1, 0, 0)$.

The Method of Lagrange Multipliers

In Solution 2 of Example 2, we used the **method of Lagrange multipliers**. The method says that the extreme values of a function f(x, y, z) whose variables are subject to a constraint g(x, y, z) = 0 are to be found on the surface g = 0 among the points where

$$\nabla f = \lambda \nabla g$$

for some scalar λ (called a Lagrange multiplier).

To explore the method further and see why it works, we first make the following observation, which we state as a theorem.

THEOREM 12—The Orthogonal Gradient Theorem Suppose that f(x, y, z) is differentiable in a region whose interior contains a smooth curve

C:
$$\mathbf{r}(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k}$$
.

If P_0 is a point on C where f has a local maximum or minimum relative to its values on C, then ∇f is orthogonal to C at P_0 .

Proof We show that ∇f is orthogonal to the curve's velocity vector at P_0 . The values of f on C are given by the composite f(g(t), h(t), k(t)), whose derivative with respect to t is

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dg}{dt} + \frac{\partial f}{\partial y}\frac{dh}{dt} + \frac{\partial f}{\partial z}\frac{dk}{dt} = \nabla f \cdot \mathbf{v}.$$

At any point P_0 where f has a local maximum or minimum relative to its values on the curve, df/dt = 0, so

$$\nabla f \cdot \mathbf{v} = 0.$$

By dropping the z-terms in Theorem 12, we obtain a similar result for functions of two variables.

COROLLARY OF THEOREM 12 At the points on a smooth curve $\mathbf{r}(t) = g(t)\mathbf{i} + h(t)\mathbf{j}$ where a differentiable function f(x, y) takes on its local maxima and minima relative to its values on the curve, $\nabla f \cdot \mathbf{v} = 0$, where $\mathbf{v} = d\mathbf{r}/dt$.

Theorem 12 is the key to the method of Lagrange multipliers. Suppose that f(x, y, z) and g(x, y, z) are differentiable and that P_0 is a point on the surface g(x, y, z) = 0 where f has a local maximum or minimum value relative to its other values on the surface. We assume also that $\nabla g \neq 0$ at points on the surface g(x, y, z) = 0. Then f takes on a local maximum or minimum at P_0 relative to its values on every differentiable curve through P_0 on the surface g(x, y, z) = 0. Therefore, ∇f is orthogonal to the velocity vector of every such differentiable curve through P_0 . So is ∇g , moreover (because ∇g is orthogonal to the level surface g = 0, as we saw in Section 14.5). Therefore, at P_0 , ∇f is some scalar multiple λ of ∇g .

The Method of Lagrange Multipliers

Suppose that f(x, y, z) and g(x, y, z) are differentiable and $\nabla g \neq 0$ when g(x, y, z) = 0. To find the local maximum and minimum values of f subject to the constraint g(x, y, z) = 0 (if these exist), find the values of f, f, f, and f that simultaneously satisfy the equations

$$\nabla f = \lambda \nabla g$$
 and $g(x, y, z) = 0$. (1)

For functions of two independent variables, the condition is similar, but without the variable z. (1)

Some care must be used in applying this method. An extreme value may not actually exist (Exercise 41).

EXAMPLE 3 Find the greatest and smallest values that the function

$$f(x,y)=xy$$

takes on the ellipse (Figure 14.52)

$$\frac{x^2}{8} + \frac{y^2}{2} = 1.$$

Solution We want to find the extreme values of f(x, y) = xy subject to the constraint

$$g(x, y) = \frac{x^2}{8} + \frac{y^2}{2} - 1 = 0.$$

To do so, we first find the values of x, y, and λ for which

$$\nabla f = \lambda \nabla g$$
 and $g(x, y) = 0$.

The gradient equation in Equations (1) gives

$$y\mathbf{i} + x\mathbf{j} = \frac{\lambda}{4}x\mathbf{i} + \lambda y\mathbf{j},$$

from which we find

$$y = \frac{\lambda}{4}x$$
, $x = \lambda y$, and $y = \frac{\lambda}{4}(\lambda y) = \frac{\lambda^2}{4}y$,

so that y = 0 or $\lambda = \pm 2$. We now consider these two cases.

Case 1: If y = 0, then x = y = 0. But (0, 0) is not on the ellipse. Hence, $y \neq 0$.

Case 2: If $y \neq 0$, then $\lambda = \pm 2$ and $x = \pm 2y$. Substituting this in the equation

g(x, y) = 0 gives

$$\frac{(\pm 2y)^2}{8} + \frac{y^2}{2} = 1$$
, $4y^2 + 4y^2 = 8$ and $y = \pm 1$.

The function f(x, y) = xy therefore takes on its extreme values on the ellipse at the four points $(\pm 2, 1)$, $(\pm 2, -1)$. The extreme values are xy = 2 and xy = -2.

The Geometry of the Solution The level curves of the function f(x, y) = xy are the hyperbolas xy = c (Figure 14.53). The farther the hyperbolas lie from the origin, the larger the absolute value of f. We want to find the extreme values of f(x, y), given that the point (x, y) also lies on the ellipse $x^2 + 4y^2 = 8$. Which hyperbolas intersecting the ellipse lie farthest from the origin? The hyperbolas that just graze the ellipse, the ones that are tangent to it, are

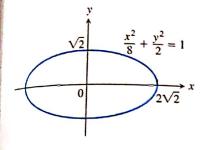


FIGURE 14.52 Example 3 shows how to find the largest and smallest values of the product xy on this ellipse.

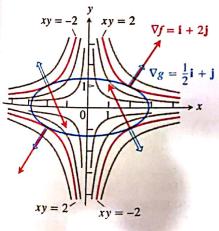


FIGURE 14.53 When subjected to the constraint $g(x, y) = x^2/8 + y^2/2 - 1 = 0$, the function f(x, y) = xy takes on extreme alues at the four points $(\pm 2, \pm 1)$. These are the points on the ellipse when ∇f (red) is a alar multiple of ∇g (blue) (Example 3).

$$\nabla f = \mathbf{i} + 2\mathbf{j}, \quad \nabla g = \frac{1}{2}\mathbf{i} + \mathbf{j}, \quad \text{and} \quad \nabla f = 2\nabla g.$$

At the point (-2, 1),

$$\nabla f = \mathbf{i} - 2\mathbf{j}, \quad \nabla g = -\frac{1}{2}\mathbf{i} + \mathbf{j}, \quad \text{and} \quad \nabla f = -2\nabla g.$$

EXAMPLE 4 Find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle $x^2 + y^2 = 1$.

Solution We model this as a Lagrange multiplier problem with

$$f(x, y) = 3x + 4y,$$
 $g(x, y) = x^2 + y^2 - 1$

and look for the values of x, y, and λ that satisfy the equations

$$\nabla f = \lambda \nabla g: \quad 3\mathbf{i} + 4\mathbf{j} = 2x\lambda \mathbf{i} + 2y\lambda \mathbf{j}$$
$$g(x, y) = 0: \quad x^2 + y^2 - 1 = 0.$$

The gradient equation in Equations (1) implies that $\lambda \neq 0$ and gives

$$x=\frac{3}{2\lambda}, \qquad y=\frac{2}{\lambda}.$$

These equations tell us, among other things, that x and y have the same sign. With these values for x and y, the equation g(x, y) = 0 gives

$$\left(\frac{3}{2\lambda}\right)^2 + \left(\frac{2}{\lambda}\right)^2 = 1 = 0,$$

so

$$\frac{9}{4\lambda^2} + \frac{4}{\lambda^2} = 1, \quad 9 + 16 = 4\lambda^2, \quad 4\lambda^2 = 25, \quad \text{and} \quad \lambda = \pm \frac{5}{2}.$$

Thus,

$$x = \frac{3}{2\lambda} = \pm \frac{3}{5}, \quad y = \frac{2}{\lambda} = \pm \frac{4}{5},$$

and f(x, y) = 3x + 4y has extreme values at $(x, y) = \pm (3/5, 4/5)$.

By calculating the value of 3x + 4y at the points $\pm (3/5, 4/5)$, we see that its maximum and minimum values on the circle $x^2 + y^2 = 1$ are

$$3\left(\frac{3}{5}\right) + 4\left(\frac{4}{5}\right) = \frac{25}{5} = 5$$
 and $3\left(-\frac{3}{5}\right) + 4\left(-\frac{4}{5}\right) = -\frac{25}{5} = -5$.

The Geometry of the Solution The level curves of f(x, y) = 3x + 4y are the lines 3x + 4y = c (Figure 14.54). The farther the lines lie from the origin, the larger the absolute value of f. We want to find the extreme values of f(x, y) given that the point (x, y) also lies on the circle $x^2 + y^2 = 1$. Which lines intersecting the circle lie farthest from the origin? The lines tangent to the circle are farthest. At the points of tangency, any vector normal to the line is normal to the circle, so the gradient $\nabla f = 3\mathbf{i} + 4\mathbf{j}$ is a multiple $(\lambda = \pm 5/2)$ of the gradient $\nabla g = 2x\mathbf{i} + 2y\mathbf{j}$. At the point (3/5, 4/5), for example,

$$\nabla f = 3\mathbf{i} + 4\mathbf{j}, \quad \nabla g = \frac{6}{5}\mathbf{i} + \frac{8}{5}\mathbf{j}, \quad \text{and} \quad \nabla f = \frac{5}{2}\nabla g.$$

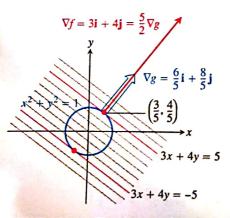


FIGURE 14.54 The function f(x, y) = 3x + 4y takes on its largest value on the unit circle $g(x, y) = x^2 + y^2 - 1 = 0$ at the point (3/5, 4/5) and its smallest value at the point (-3/5, -4/5) (Example 4). At each of these points, ∇f is a scalar multiple of ∇g . The figure shows the radients at the first point but not the econd.