Recitation Week 3

SECTIONS 12.4, 12.5

- 1. Let $w = (x + y + z)^2$, x = r s, $y = \cos(r + s)$, $z = \sin(r + s)$. Find $\partial w/\partial r$.
- 2. Find $\partial z/\partial x$ and $\partial z/\partial y$ at (2,3,6) if the equation

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} - 1 = 0$$

defines z as a differentiable function of x and y.

3. Suppose that the partial derivatives of a function f(x, y, z) at points on the helix $x = \cos t$, $y = \sin t$ and z = t are

$$f_x = \cos t$$
, $f_y = \sin t$, $f_z = t^2 + t - 2$.

At what points on the curve, if any, can f take on extreme values?

- 4. Consider $f(x,y) = x^2 xy + y^2$. Sketch the curve f(x,y) = 7 together with ∇f and the tangent line at the point (-1,2). Then write an equation for the tangent line and an equation for the normal line at that point.
- 5. The derivative of f(x,y) at $P_0(1,2)$ in the direction of $\vec{i} + \vec{j}$ is $2\sqrt{2}$ and in the direction of $-2\vec{j}$ is -3. What is the derivative of f in the direction of $-\vec{i} 2\vec{j}$? Give reasons for your answer.