HOMEWORK ASSIGNMENT 1

Name: Due: Thursday January 23, 10am

PROBLEM 1:

Find the general solutions to the ODEs:

- 1. y' + 5y = 0,
- $2. \ xy' + 3x^3y = 0,$
- 3. y'' + 4y = 0,
- 4. y'' 4y = 0,
- 5. y'' 4y' + 4y = 0.

Problem 2:

Let V be a vector space equipped with an inner product $\langle v_i, v_j \rangle$ and a basis $\mathcal{B} = \{v_1, \ldots, v_n\}$. The basis vectors are orthogonal if $\langle v_i, v_j \rangle = 0$ for any $i \neq j$. Let $w \in V$ have the expansion $w = c_1v_1 + \cdots + c_nv_n$. In general, solving for c_i requires row reduction.

a) If the basis vectors are orthogonal, there is an explicit formula for the c_i . Show that

$$c_i = \frac{\langle w, v_i \rangle}{\langle v_i, v_i \rangle}, \qquad i = 1, \dots, n.$$

b) In the case where $V = \mathbb{R}^3$, $\mathcal{B} = \{v_1, v_2, v_3\} = \{(1, 0, 0), (0, 1, 1), (0, 1, -1)\}$, use this to find the coefficients c_1, c_2, c_3 , where w = (3, 4, 5).

PROBLEM 3:

The following table gives the inner product of vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} .

	u	\mathbf{v}	\mathbf{w}
u	9	0	6
\mathbf{v}	0	1	3
w	6	3	38

For example, $\mathbf{v} \cdot \mathbf{w} = 3$.

- a) Find a unit vector in the same direction as u.
- b) Compute $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w})$.

- c) Compute the length $\|\mathbf{v} + \mathbf{w}\|$.
- d) Find the orthogonal projection of \mathbf{w} into the plane E spanned by \mathbf{u} and \mathbf{v} . Express your solution as a linear combination of \mathbf{u} and \mathbf{v} .
- e) Find a unit vector orthogonal to the plane E. Express your solution as a linear combination of \mathbf{u} , \mathbf{v} , and \mathbf{w} .
- f) Find an orthonormal basis of the three dimensional space spanned by \mathbf{u} , \mathbf{v} , and \mathbf{w} . Here, orthonormal basis means the basis vectors are orthogonal units vectors. Express the solution as linear combinations of \mathbf{u} , \mathbf{v} , and \mathbf{w} . (Gram-Schmidt algorithm)

Problem 4:

Show that if u(x,t) is a solution to the transport equation $u_t = u_x$, then it is also a solution of the wave equation $u_{tt} = u_{xx}$. Verify that u(x,t) = f(x+t) is always a solution to the transport equation $u_t = u_x$.

PROBLEM 5:

Let f, g be functions of three variables, and \vec{F} a vector field in \mathbb{R}^3 .

a) Prove the following product rule by direct computation:

$$\operatorname{div}(f\vec{F}) = \nabla f \cdot \vec{F} + f \operatorname{div} \vec{F}.$$

b) Use the product rule and the divergence theorem to show the following integration by parts formula:

$$\int_{\Omega} f \Delta g = \int_{\partial \Omega} f \frac{\partial g}{\partial n} - \int_{\Omega} \nabla f \cdot \nabla g,$$

where Ω is a bounded region in \mathbb{R}^3 , \vec{n} is the outward unit normal vector to the boundary $\partial\Omega$, and $\frac{\partial g}{\partial n} = \vec{n} \cdot \nabla g$ is the directional derivative in the normal direction.

PROBLEM 6:

Exercise 1.2.1 of the book (Applied PDE, with Fourier Series and Boundary Value Problems, Fifth Edition. Richard Haberman).

Problem 7:

Exercise 1.2.2 of the book (Applied PDE, with Fourier Series and Boundary Value Problems, Fifth Edition. Richard Haberman).

PROBLEM 8:

Exercise 1.2.3 of the book (Applied PDE, with Fourier Series and Boundary Value Problems, Fifth Edition. Richard Haberman).

Problem 9:

Exercise 1.2.4 of the book (Applied PDE, with Fourier Series and Boundary Value Problems, Fifth Edition. Richard Haberman).

PROBLEM 10:

Read Chapter 1 and Section 2.2 of Richard Haberman's book.