HOMEWORK ASSIGNMENT 4, Math 241, Section 002

Name: Due: Thursday February 13, 8pm

1. Solve Laplace's equation inside the rectangle $0 \le x \le L$, $0 \le y \le H$, with the boundary conditions $u_x(0,y) = 0$, $u_x(L,y) = 0$, $u_y(x,H) = 0$, and

$$u(x,0) = \begin{cases} 0, & L/2 < x < L, \\ 1, & 0 < x < L/2. \end{cases}$$

2. Consider u(x, y) satisfying Laplace's equation inside a rectangle 0 < x < L, 0 < y < H, subject to the boundary conditions

$$u_x(0,y) = 0,$$
 $u_y(x,0) = 0,$ $u_x(L,y) = 0,$ $u_y(x,H) = f(x).$

- a) Without solving the problem, briefly explain the physical condition under which there is a solution to this problem. Hint: Remember that Laplace's equation describes the equilibrium temperature over the region.
- b) Solve the problem by the method of separation of variables. Show that the method works only under the condition of part a).
- c) The solution in part b) has an arbitrary constant. Determine it by consideration of the time-dependent heat equation $u_t = \Delta u = u_{xx} + u_{yy}$ subject to the initial condition u(x, y, 0) = g(x, y). Hint: You might need to use integration by parts in several variables (see end of Lecture 1, or the particular case in formula (1.5.16) on page 25 of Haberman's book).

Note: For better understanding, you can also read problems 2.5.15.d) and 2.5.16 in the book.

3. Find the solution to the Laplace equation

$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$$

on the region of the plane outside the disk of radius 1, which is bounded as $r \to +\infty$, and satisfies $u(1, \theta) = 1 + 3\cos(2\theta)$.

4. Solve the Laplace equation inside a semi-infinite strip $0 < x < \infty$, 0 < y < H, subject to the boundary conditions $u_y(x,0) = 0$, $u_y(x,H) = 0$, u(0,y) = f(y). Consider only physically reasonable solutions.

Hint: you may want to use exponentials instead of hyperbolic functions in this problem.

5. a) Determine all non-zero solutions $\phi(x)$ and scalar λ given the ODE

$$x^{2}\phi''(x) + x\phi'(x) + \lambda^{2}\phi(x) = 0,$$

for 1 < x < 2, given the boundary conditions $\phi(1) = 0 = \phi(2)$.

Note: This would appear when solving the Laplace equation in an annulus of radii 1 and 2 with zero temperatures on the inner and outer boundaries.

b) Construct a general solution to the PDE

$$x^{2}u_{xx}(x,t) + xu_{x}(x,t) = u_{t}(x,t),$$

for 1 < x < 2 and t > 0, given the boundary conditions u(1,t) = 0 and u(2,t) = 0 for all $t \ge 0$. (Use part a))

6. Consider the function $f:[0,1] \to \mathbb{R}$ given by:

$$f(x) = 1 - x.$$

- a) Sketch the graph of the Fourier Sine Series of f(x) for $-3 \le x \le 3$. Mark clearly the points of discontinuity, if there are any.
- b) Compute the Fourier Sine Series of f(x). Simplify the coefficients.
- c) For what values $0 \le x \le 1$ does the Fourier Sine Series converge to f(x)?
- 7. Compute the Fourier series of the function $f: [-1,1] \to \mathbb{R}$ given by f(x) = 1 |x|. For what values of $-1 \le x \le 1$ does this series converge to f(x)?
- 8. In the Fourier series expansion of f(x) = x 1 on [-1, 1],
 - a) Find the coefficient on the term $\sin(3\pi x)$.
 - b) At x = 1, to what value does the Fourier series converge?
- 9. Review all the material so far for the first midterm (that is, Lecture Notes 1 to 8. In the book, up to Section 3.3). How much time did this homework assignment take you to complete?